

	DPP – 2 (Circular Motion)
Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/78
Video Solution on YouTube:-	https://youtu.be/cFaIp6MqBWc
Written Solution on Website:-	https://physicsaholics.com/note/notesDetalis/80

Q 1. Two bodies A and B are moving with same constant speed v in clockwise direction in a horizontal circle of radius R and are initially diametrically opposite as shown in figure. The particle B now achieves a tangential acceleration a m/s^2 . Then :

(a) they collide after time

(b) they collide after time 2

(c) relative velocity just before collision is $\sqrt{\pi a R}$ (d) relative velocity just before collision is $\sqrt{2\pi a R}$

πR

Q 2. A bead of mass m is located on a parabolic wire with its axis vertical and vertex at the origin as shown in figure and whose equation is $x^2 = 4ay$. The wire frame is fixed in vertical plane and the bead can slide on it without friction. The bead is released from the point y = 4a on the wire frame from rest. The tangential acceleration of the bead when it reaches the position given by y = a is :

Q 3. A heavy particle is projected from a point on the horizontal at an angle 45° with the horizontal with a speed of 20m/s. Then the radius of the curvature of its path at the instant of crossing the same horizontal is _____. (a) $10\sqrt{2}$ (b) $40\sqrt{2}$ (c) $20\sqrt{2}$ (d) None of these

- Q 4. A particle is fired from a point on the ground with speed u making an angle θ with the horizontal. Then:
 - (a) the radius of curvature of the projectile at the heighest point is $\frac{u^2 c}{d}$

$$\frac{u^2 \cos^2 \theta}{g}$$
$$u^2 \sin^2 \theta$$

- (b) the radius of curvature of the projectile at the highest point is
- (c) at the point of projection tangential acceleration is g sin θ
- (d) at the point of projection tangential acceleration is g cos $\boldsymbol{\theta}$
- Q 5. An open merry go round rotates at an angular velocity. A person stands in it at a distance r from the rotational axis. It is raining and raindrops fall vertically with a velocity v. The person should hold an umbrella to protect himself with axis of umbrella tilted with vertical at angle:
 - (a) $tan^{-1}(v_0/r\omega)$ in the plane perpendicular to \vec{r}
 - (b) $tan^{-1}(r\omega/v_0)$ in the plane perpendicular to \vec{r}
 - (c) $tan^{-1}(r\omega/v_0)$ in the plane through \vec{r}
 - (d) None
- Q 6. For a moving particle if a_r is radial acceleration and a_T is tangential acceleration, then match the motion of column II with conditions given in column I.

Column I

Column II

- (A) $a_r = 0, a_T \neq 0$ (B) $a_r \neq 0, a_T = 0$ (C) $a_r = 0, a_T = 0$ (D) $a_r \neq 0, a_T \neq 0$ (P) Non uniform circular (q) Uniform circular (r) accelerated translatory (s) uniform translatory
- Q 7. A particle is projected with a velocity u at an angle θ with the horizontal. Find the radius of the curvature of the parabola traced out by the particle at the point where velocity makes an angle ($\theta/2$) with the horizontal.

(a)
$$\frac{u^2 \cos^2 \theta}{2g \cos^3 \frac{\theta}{2}}$$

(b) $\frac{2u^2 \cos^2 \theta}{g \cos^3 \frac{\theta}{2}}$
(c) $\frac{3u^2 \cos^2 \theta}{2g \cos^3 \frac{\theta}{2}}$
(d) $\frac{u^2 \cos^2 \theta}{g \cos^3 \frac{\theta}{2}}$

Comprehension (Q.8 to Q.10)

A horizontal rod is rotating about a vertical axis passing through its one end with constant angular velocity 1 rad/sec. An insect starts moving on it from axis with constant speed 1m/sec relative to rod.

- Q 8. Speed of insect at t = 1 sec is (a) 1m/sec (b) 2m/sec (c) $\sqrt{2}$ m/sec (d) 2 $\sqrt{2}$ m/sec
- Q 9. Tangential acceleration of insect at t = 1 sec (a) $\sqrt{2}$ m/sec² (b) $\frac{1}{\sqrt{2}}$ m/sec² (c) 1 m/sec² (d) 2 m/sec²
- Q 10. Direction of radial acceleration of insect at t = 1 is

3

(a) Along rod	(b) perpendicular to rod
(c) At angle 45 ⁰ with rod	(d) None of these

Q 11. For a particle moving along circular path, the radial acceleration a_r is proportional to time t. If a_t is the tangential acceleration, then which of the following will be independent of time t? (a) a_t (b) $a_r a_t$ (c) $\frac{a_r}{a_t}$ (d) $a_r (a_t)^2$

- Q 12. A particle starts travelling on a circle with constant tangential acceleration. The angle between velocity vector and acceleration vector, at the moment when particle completes half the circular track, is
 (a) $\tan^{-1}(2\pi)$ (b) $\tan^{-1}(\pi)$ (c) $\tan^{-1}(3\pi)$ (d) zero
- Q 13. A particle is moving in a circular path. The acceleration and momentum of the particle at a certain moment are $\vec{a} = (4\hat{i} + 3\hat{j}) \text{ m/s}^2$ and $\vec{p} = (8\hat{i} 6\hat{j}) \text{ kg-m/s}$. The motion of the particle is:
 - (a) uniform circular motion
 - (b) accelerated circular motion
 - (c) deaccelerated circular motion
 - (d) we cannot say anything with \vec{a} and \vec{p} only
- Q 14. Column I contain some questions and Column II contains some answers. Match the correct answer of question.

	Column I		Column II
(A)	Particle moving on a straight line path with constant velocity	(p)	Magnitude of net force is constant
(B)	Particle moving on a straight line path with constant acceleration	(q)	Direction of net force is fixed
(C)	Particle moving in a circle with constant speed	(r)	Magnitude of net force is variable
(D)	Particle moving along an ellipse with constant speed	(s)	Direction of net force changes with time

4

Answer Key

Q.1 d	Q.2 c	Q.3 b	Q.4 a, c	Q.5 b
Q.6 A-R, B-Q, C-S, D-P	Q.7 d	Q.8 c	Q.9 b	Q.10 c
Q.11 d	Q.12 a	Q.13 b	Q.14 A(p), B(p, q), C(p, s), D(r, s)	
			NF C	G