DPP - 2 (Circular Motion)

Video Solution on Website:- https://physicsaholics.com/home/courseDetails/78

Video Solution on YouTube:- https://youtu.be/cFalp6MqBWc

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/80

Q 1. Two bodies A and B are moving with same constant speed v in clockwise direction in a horizontal circle of radius R and are initially diametrically opposite as shown in figure. The particle B now achieves a tangential acceleration a $\mathrm{m} / \mathrm{s}^{2}$. Then :

(a) they collide after time $\sqrt{\frac{\pi R}{\frac{a}{2}}}$
(b) they collide after time $2 \sqrt{\frac{\pi R}{a}}$
(c) relative velocity just before collision is $\sqrt{\pi a R}$
(d) relative velocity just before collision is $\sqrt{2 \pi a R}$

Q 2. A bead of mass m is located on a parabolic wire with its axis vertical and vertex at the origin as shown in figure and whose equation is $x^{2}=4 a y$. The wire frame is fixed in vertical plane and the bead can slide on it without friction. The bead is released from the point $y=4 a$ on the wire frame from rest. The tangential acceleration of the bead when it reaches the position given by $\mathrm{y}=\mathrm{a}$ is :

(a) $\frac{g}{2}$
(b) $\frac{\sqrt{3} g}{2}$
(c) $\frac{g}{\sqrt{2}}$
(d) $\frac{g}{\sqrt{5}}$

Q 3. A heavy particle is projected from a point on the horizontal at an angle 45° with the horizontal with a speed of $20 \mathrm{~m} / \mathrm{s}$. Then the radius of the curvature of its path at the instant of crossing the same horizontal is \qquad .
(a) $10 \sqrt{2}$
(b) $40 \sqrt{2}$
(c) $20 \sqrt{2}$
(d) None of these

Q 4. A particle is fired from a point on the ground with speed u making an angle θ with the horizontal. Then:
(a) the radius of curvature of the projectile at the heighest point is $\frac{u^{2} \cos ^{2} \theta}{g}$
(b) the radius of curvature of the projectile at the highest point is $\frac{u^{2} \sin ^{2} \theta}{g}$
(c) at the point of projection tangential acceleration is $g \sin \theta$
(d) at the point of projection tangential acceleration is $g \cos \theta$

Q 5. An open merry - go - round rotates at an angular velocity. A person stands in it at a distance r from the rotational axis. It is raining and raindrops fall vertically with a velocity v . The person should hold an umbrella to protect himself with axis of umbrella tilted with vertical at angle:
(a) $\tan ^{-1}\left(v_{0} / r \omega\right)$ in the plane perpendicular to \vec{r}
(b) $\tan ^{-1}\left(r \omega / v_{0}\right)$ in the plane perpendicular to \vec{r}
(c) $\tan ^{-1}\left(r \omega / v_{0}\right)$ in the plane through \vec{r}
(d) None

Q 6. For a moving particle if a_{r} is radial acceleration and a_{T} is tangential acceleration, then match the motion of column II with conditions given in column I.

Column I

(A) $a_{r}=0, a_{T} \neq 0$

Column II
(p) Non uniform circular
(B) $a_{r} \neq 0, a_{T}=0$
(C) $a_{r}=0, a_{T}=0$
(D) $a_{r} \neq 0, a_{T} \neq 0$
(q) Uniform circular
(r) accelerated translatory
(s) uniform translatory

Q 7. A particle is projected with a velocity uat an angle θ with the horizontal. Find the radius of the curyature of the parabola traced out by the particle at the point where velocity makes an angle $(\theta / 2)$ with the horizontal.
(a) $\frac{u^{2} \cos ^{2} \theta}{2 g \cos ^{3} \frac{\theta}{2}}$
(b) $\frac{2 u^{2} \cos ^{2} \theta}{g \cos ^{3} \frac{\theta}{2}}$
(c) $\frac{3 u^{2} \cos ^{2} \theta}{2 g \cos ^{3} \frac{\theta}{2}}$
(d) $\frac{u^{2} \cos ^{2} \theta}{g \cos ^{3} \frac{\theta}{2}}$

Comprehension (Q. 8 to Q.10)
A horizontal rod is rotating about a vertical axis passing through its one end with constant angular velocity $1 \mathrm{rad} / \mathrm{sec}$. An insect starts moving on it from axis with constant speed $1 \mathrm{~m} / \mathrm{sec}$ relative to rod.

Q 8. Speed of insect at $\mathrm{t}=1 \mathrm{sec}$ is
(a) $1 \mathrm{~m} / \mathrm{sec}$
(b) $2 \mathrm{~m} / \mathrm{sec}$
(c) $\sqrt{2} \mathrm{~m} / \mathrm{sec}$
(d) $2 \sqrt{2} \mathrm{~m} / \mathrm{sec}$

Q 9. Tangential acceleration of insect at $\mathrm{t}=1 \mathrm{sec}$
(a) $\sqrt{2} \mathrm{~m} / \mathrm{sec}^{2}$
(b) $\frac{1}{\sqrt{2}} \quad \mathrm{~m} / \mathrm{sec}^{2}$
(c) $1 \mathrm{~m} / \mathrm{sec}^{2}$
(d) $2 \mathrm{~m} / \mathrm{sec}^{2}$

Q 10. Direction of radial acceleration of insect at $\mathrm{t}=1$ is
(a) Along rod
(b) perpendicular to rod
(c) At angle 45^{0} with rod
(d) None of these

Q 11. For a particle moving along circular path, the radial acceleration a_{r} is proportional to time t. If a_{t} is the tangential acceleration, then which of the following will be independent of time t ?
(a) at_{t}
(b) $a_{r} a_{t}$
(c) $\frac{a_{t}}{a_{t}}$
(d) $a_{r}\left(a_{t}\right)^{2}$

Q 12. A particle starts travelling on a circle with constant tangential acceleration. The angle between velocity vector and acceleration vector, at the moment when particle completes half the circular track, is
(a) $\tan ^{-1}(2 \pi)$
(b) $\tan ^{-1}(\pi)$
(c) $\tan ^{-1}(3 \pi)$
(d) zero

Q 13. A particle is moving in a circular path. The acceleration and momentum of the particle at a certain moment are $\vec{a}=(4 \hat{\imath}+3 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}$ and $\vec{p}=(8 \hat{\imath}-6 \hat{\jmath}) \mathrm{kg}-\mathrm{m} / \mathrm{s}$. The motion of the particle is:
(a) uniform circular motion
(b) accelerated circular motion
(c) deaccelerated circular motion
(d) we cannot say anything with \vec{a} and \vec{p} only

Q 14. Column I contain some questions and Column II contains some answers. Match the correct answer of question.

| (A) | Partiele moving on a straight line path
 constant velocity | with | (p) |
| :--- | :--- | :--- | :--- | Magnitude of net force is constant

Answer Key

Q. 1 d	Q. 2 c	Q. 3 b	Q. 4 a, c	Q. 5 b
$\begin{gathered} \text { Q. } 6 \begin{array}{c} \text { A-R, B-Q, C-S, } \\ \text { D.P. } \end{array} \\ \hline \end{gathered}$	Q. 7 d	Q. 8 c	$\text { Q. } 9 \mathrm{~b}$	Q. 10 c
Q. 11 d	Q. 12 a	Q. 13 b		

